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Abstract

Microvascular invasion (MVI) of hepatocellular carcinoma
(HCC) is a crucial histopathologic prognostic factor associ-
ated with cancer recurrence after liver transplantation or hep-
atectomy. Recently, clinicoradiologic characteristics are com-
bined with medical images to enhance the HCC prediction.
However, compared to medical imaging data, the clinicoradi-
ologic characteristics is not easy to collect or even unavail-
able, as it requires more efforts of clinicians and more med-
ical instruments for collecting diverse measurements. This
work explores how to transfer the knowledge of a teacher
network learned from non-image clinical data and image data
to a student network with only image data such that the stu-
dent network can leverage the transferred clinical information
to boost HCC classification with only imaging data as input.
Specifically, we present a cross-modality distillation network
(CMD-Net) to transform knowledge of non-image clinicora-
diologic from the teacher network to the student network.
The teacher network integrates non-image clinicoradiologic
characteristics with two 3D MRI modality images via MRI-
clinical-fusion modules and a cross attention (CA) module,
while the student network extracts features from two modal-
ity MRI data via two MRI-only modules and then refine these
two MRI features via a CA module. Image-level distillation
and feature-level distillation are jointly adopt to transfer the
clinical information between teacher and student networks.

Introduction
Hepatocellular carcinoma (HCC) is the fifth most common
cancer in the world and the third leading cause of cancer-
related death. The 5-year overall survival rate of HCC pa-
tients after surgery is only 10-20% (Yang et al. 2019). Af-
ter hepatectomy and liver transplantation, The 5-year re-
currence rate can be as high as 50-70% and 35%, respec-
tively(Mazzaferro et al. 2018).

Many literature reports that vascular invasion is one of
the important factors that threaten the prognosis of patients
(Roayaie et al. 2009; Lee et al. 2017), which limits the im-
plementation of curable treatment strategies for liver resec-
tion, liver transplantation, and radiofrequency ablation (Ima-
mura et al. 2003; Okada et al. 1994). According to its detec-
tion methods, vascular invasion can usually be classified into
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Macrovascular invasion (MaVI) and Microvascular invasion
(MVI) (Sumie et al. 2014; Roayaie et al. 2009; Lee et al.
2017). MVI refers to the presence of nests of cancer cells
in the vascular cavity lined by endothelial cells under the
microscope (Yang et al. 2019; Cong et al. 2016; Lei et al.
2016; Rodriguez-Peralvarez et al. 2013), which is present in
15-57.1% of postoperative liver cancer specimens (Lei et al.
2016). MVI is also a risk factor for poor outcomes after liver
resection or liver transplantation in patients with liver can-
cer (Xu et al. 2019; Lee et al. 2017; Shindoh et al. 2020;
Iguchi et al. 2015). However, MVI is only visible under the
postoperative pathology microscope (Cong et al. 2016; Lei
et al. 2016) and requires extensive sampling (Hu et al. 2018).
Its relatively lagging gold standard for pathology severely
limits the timely and effective adjustment of surgical treat-
ment strategies. Therefore, the accurate stratification of MVI
grades before surgery can be used as an important evaluation
reference index for the formulation of treatment plans for
patients with liver cancer and the follow-up monitoring af-
ter surgery. According to the number and distribution of mi-
crovessels involved, MVI can be further divided into M0 (no
MVI), M1 (MVI <=5 and within 1cm of the tumor edge)
and M2 (MVI > 5 or > 1cm from the tumor surface) (Cong
et al. 2016).

As verified by previous studies (Zhang et al. 2021), clin-
ical radiological characteristics of patients is more relevant
to the prediction of MVI. Experiments have also proved that
the introduction of clinical radiological characteristics have
greatly improved the prediction effect of MVI. However,
clinical radiology characteristics are not always available in
practice, and there are many experimental indicators that are
not fully obtained. So we thought of transferring the knowl-
edge of the teacher network that introduced clinical radiol-
ogy characteristics to the student network that only had im-
age data.

In this paper, we present a cross-modality distillation net-
work (CMD-Net) for predicting MVI of HCC to distill a
teacher network with a combination of imaging and clini-
cal data to a student network with only imaging data. By
doing so, the inference stage does not require any clinical
data and the network performance with only imaging data in
the inference stage can be further improved due to the clini-
cal information transferred from the teacher network in our
method. Here, multiple MRI data and 52 clinical items are



Figure 1: Illustration of our modality-aware distillation network, which transfers knowledge from a teacher network with clinical
data to a student network without clinical data. The student network is trained with a supervised learning loss, and a Kullback
Leibler (KL) Divergence based mimcry loss to match the probability estimates of the teacher network.

utilized in our work.

Related work
Microvascular invasion of hepatocellular
carcinoma
Early MVI prediction works mainly examined radiologic
features at the local lesion area of an MR volume (Chong
et al. 2021; Xu et al. 2019; Yang et al. 2019; Feng et al.
2019), and these features included non-smooth tumor mar-
gin, peritumoral enhancement on arterial phase (AP), per-
itumoral hypointensity on hepatobiliary phase (HBP), and
so on (Feng et al. 2019). However, these hand-crafted fea-
tures are sensitive to the acquisition methods and recon-
struction parameters, thereby suffering from limited capabil-
ity in handle diverse clinical usage. Motivated by the supe-
rior performance of deep features over hand-crafted features
in diverse medical image analysis tasks, convolutional neu-
ral network (CNNs) have been developed to classify MVI
of HCC patients. Jiang et al. (Jiang et al. 2021) utilized
eXtreme Gradient Boosting (XGBoost) and deep learning
from CT images to predict MVI preoperatively. Zhang et
al. (Zhang et al. 2021) developed a 3D CNN prediction
model to fuse features from multiple MR sequences. Men
et al. (Men et al. 2019) embedded long short-term mem-
ory (LSTM) into a CNN to fuse multi-modal MR volumes
for predicting MVI of HCC patients. Xiao et al. (Xiao,
Zhao, and Li 2022) proposed a task relevance driven adver-
sarial learning framework (TrdAL) for simultaneous HCC
detection, size grading, and multi-index quantification us-
ing multi-modality MRI. However, only MR images are in-
volved to predict MVI status in those CNN-based methods.
To boost the MVI prediction accuracy, our work leverages
both imaging modality and clinical modality within a knowl-
edge distillation learning framework. Unlike conventional

knowledge distillation, the teacher network in our method
takes multiple imaging data and non-image clinical data,
while the student network only utilizes imaging data. Hence,
our modality-aware distillation network transfers the clinical
information from the teacher network and the student net-
work to enhance the classification accuracy of the student
network with only imaging data.

Proposed Solution
Figure 1 shows the schematic illustration of the proposed
Cross-Modality Distillation Network (CMD-Net) for MVI
prediction of HCC. As a distillation network, our CMD-Net
consists of a teacher network and a student network, but it
distills a teacher network with diverse clinical information to
a student network without any clinical data. The student net-
work takes two MRI sequences as the input, pass each MRI
image into a MRI-only module to extract MRI features, and
then develops a cross attention (CA) module to refine two
MRI features for final MVI prediction. On the other hand,
the teacher network presents two MRI-clinical-fusion mod-
ule to first extract integrated features of the MRI image and
the clinical data, and then refine these two obtained features
via another CA module for generating a MVI classification
result. After that, we devise a distillation scheme by consid-
ering both class-level distillation and feature-level distilla-
tion. The class-level distillation makes the two predictions
of the student network and the teacher network to be simi-
lar, while the feature-level distillation transfers the clinical-
guided features of the teacher network to student’s features,
which do not consider any clinical data.

Teacher network
Non-image Clinical data has shown its capability of provid-
ing complementary information for the classification task
with only image data (Duanmu et al. 2020). Motivated



by this, we integrate clinical data, the Hepatobiliary phase
(HBP) MRI image, and the pre-contrast (PRE) MRI im-
age as the input of the teacher network of our CMD-Net
for the prediction of MVI in HCC and training the student
network with only image data. Specifically, the teacher net-
work first passes the HBP image and clinical data into a
MRI-clinical-fusion CNN to extract a 512-dimensional vec-
tor Zt

hbp, and the PRE image and clinical data are then feed
into another MRI-clinical-fusion CNN for obtaining another
512-dimensional vector Zt

pre. Then, we concatenate Zt
hbp

and Zt
pre to produce Zt, which is passed into two fully-

connected layers to predict a classification result P t with
three elements of the teacher network.

MRI-clinical-fusion module. Similar to (Duanmu et al.
2020), our MRI-clinical-fusion module integrates MRI data
and non-imaging clinical data for a HCC prediction. taking
a 3D MRI data and a vectorized clinical data as the inputs,
the image-clinical fusion module first applies four fully-
connected (FC) layers on the input clinical data to obtain
four feature maps, which feature channels are 64, 128, 256,
and 256. Meanwhile, we utilize four convolutional blocks
on the input MRI image to obtain another 3D feature maps,
and the feature channels are also set as 64, 128, 256, and
256. Each convolutional block consists of two 3×3 convolu-
tional layers. And then we channel-wisely multiply four fea-
ture maps from the clinical data and the corresponding four
features from the MRI data for integrating them together.
Specifically, let C denote the clinical features (a vector), X
denote the MRI image features (3D), and Y denote the out-
put 3D feature map. Note that the number of element of the
vector C is the same as the number of channels of 3D feature
map X. Then, the channel-wise calculation (between C and
X) is summarized as follows: (1) for i-th element of C, we
multiply it with the i-th channel of X and take the multipli-
cation results as the i-th channel of Y:

Yi(u, v) = Ci ∗Xi(u, v) , (1)

where Ci denote the i-th element of C. Xi and Yi represent
the i-th channel of the 3D feature map X and Y, respectively.
(u, v) denotes the pixel coordinates at the Xi and Yi. (2)
Then, we conduct such operation for all elements of the clin-
ical feature vector C and thus can generate the multiplication
result Y. After that, we then apply a 3×3 convolutional layer
and one fully-connected (FC) layers to output a feature vec-
tor with 512 elements.

Student network
Although a fusion of the clinical data and the image data can
improve the HCC classification result, the clinical data are
not often available when compared to the MRI images for
classifying HCC patients in clinical diagnosis. In order to
improve the flexibility of our model in clinical application,
we devise a modality-aware knowledge distillation network
to transfer the knowledge learned by a teacher network with
a fusion of a clinical data modality and the image modality
to a student network with only the image modality. By do-
ing so, the clinical data knowledge can be distilled from the

teacher network to the student network, and thus the classi-
fication performance of the student work can be enhanced
even though the student network does not get any clinical
data in the testing stage.

As shown in Figure 1, our student work takes a 3D HBP
MRI image and a 3D PRE MRI image as the input, and then
passes the HBP data into a MRI-only module to obtain fea-
tures Zs

hbp and the PRE data into another MRI-only mod-
ule to obtain the feature map Zs

pre. Note that Zs
hbp and Zs

pre

are two vectors with 512 elements. After that, we concate-
nate Zs

hbp and Zs
pre to obtain Zs and feed Zs into a fully-

connected layer to predict a HCC classification result P s,
which has three elements.

Cross Attention (CA) Module
Our CA module is to refine two features from different im-
age modalities by leveraging their complementary informa-
tion based on self-attention frameworks (Oh et al. 2019;
Vaswani et al. 2017; Wang et al. 2018). Specifically, let X
and Y to denote the input two feature maps of the SA mod-
ule. Then, the SA module first applies a linear transforma-
tion layers on X to obtain three feature maps, including
query Qx, key Kx, and value Vx. Meanwhile, we apply a
linear transformation layers on Y to generate a key feature
map Ky and a value feature map Vy . After that, we gener-
ate a score map Sx by multiplying Qx and the transpose of
Kx, and another score map Sy by multiplying Qy and the
transpose of Ky . Then, we multiple the obtained score maps
Sx with the value feature map Vx, and multiply Sy with Vy

to produce two resultant feature maps, which are then added
together to generate the output refined feature map X̂:

X̂ = Vx × (Qx ×Kx
T ) + Vy × (Qx ×Ky

T ) . (2)

Similarly, the CA module applies another transformation
layer on Y to obtain a feature map Qy . Then, two score maps
are computed by multiplying Qy and the transpose of Ky ,
and multiplying Qy and the transpose of Vy . After that, the
refined feature map ŷ is computed by:

Ŷ = Vx × (Qy ×Kx
T ) + Vy × (Qy ×Ky

T ) . (3)

Cross-Modality Distillation
We apply the knowledge distillation strategy to transform
the clinical information of the teacher network to the stu-
dent network. Apart from the straightforward classification
result-level distillation, we present an auxiliary feature-level
distillation loss to distill features fused from clinical data
and MRI image of the teacher network to features from only
MRI image.

Classification-level distillation. Let qsm(xi) denote the
class probabilities for the class of the MRI xi data produced
from the student network, while qtm(xi) represent the class
probabilities for the class of the MRI xi data produced from
the teacher network network. Then, the classification-level
distillation loss Ld

class is simply defined to push make the
class probabilities from the teacher network as targets for
training the student network. To do so, we utilize the Kull-
back Leibler (KL) divergence to measure the difference of



two distribution:

Ld
class = DKL

(
qtm(xi)∥qsm(xi)

)
=

N∑
i=1

M∑
m=1

pm2 (xi) log
pm2 (xi)

pm1 (xi)
,

(4)

where N and M denote the number of training sample and
the number of total class. DKL() represents the Kullback-
Leibler divergence between two probabilities.

Feature-level distillation. Apart from the classification-
level knowledge distillation, we also transfer the intermedi-
ate features of the teacher network with the clinical informa-
tion to that of the student network. In this regard, we devise a
feature-level distillation strategy. Specifically, we distill the
output features of two Interactive Models of the teacher net-
work, since these two features integrate the clinical data and
the HBP image and the clinical data and the PRE image
respectively. Hence, we compute a feature-level distillation
loss Ld

feature as the combination of the Kullback Leibler
(KL) divergence between Zt

hbp and Zs
hbp and the Kullback

Leibler (KL) divergence between Zt
pre and Zs

pre:

Ld
feature = DKL

(
Zt
hbp∥Zs

hbp

)
+ β1DKL

(
Zt
pre∥Zs

pre

)
=

N∑
i=1

M∑
m=1

pm2 (xi) log
pm2 (xi)

pm1 (xi)
,

(5)
where β1 is to weight Kullback-Leibler divergence terms,
and the weight β1=1. DKL(Zt

hbp∥Zs
hbp) denote the

Kullback-Leibler divergence between two features Zt
hbp and

Zs
hbp. DKL(Zt

pre∥Zs
pre) represents the Kullback-Leibler

divergence between two features Zt
pre and Zs

pre.

Our loss function. The loss function of our network con-
sists of two supervised losses on the teacher network and the
student network, the self-supervised loss for the clinical data
prediction, and distillation loss between the student network
and the teacher network. The definition of our loss function
is given by:

Ltotal = Ls
T + Ls

S + Ld
class + Ld

feature , (6)

where Ls
T and Ls

S denote the supervised loss of the teacher
network prediction and the supervised loss of the stu-
dent network prediction, respectively. Here, we utilize fo-
cal loss (Lin et al. 2017) to compute the prediction loss of
Ls
T and Ls

S . Lclinical represents the self-supervised loss for
the clinical data prediction. Ld

class denotes the classification-
level distillation loss of Eq. (4) and Ld

feature is the feature-
level distillation loss of Eq. (5) between the teacher net-
work and the student network. We utilize the loss function
of Eq. (6) to train our modality-aware distillation network
for MVI prediction.

Experiments
Dataset and Evaluation Metric

Dataset. We collected a inhouse dataset consisting of 270
pathologically confirmed HCC patients with preoperative
MRI met the inclusion criteria. The HCC MRI data were
taken by a 7-point baseline sample collection protocol (Cong
et al. 2016). According to the high-risk factors of adverse
outcomes, all 270 patients were classified into M0 (no MVI),
or M1 (invaded vessels were no more than five and located at
the peritumoral region adjacent to the tumor surface within
1 cm), or M2 (MVI of >5 or at >1 cm away from the tu-
mor surface), respectively. The collected dataset consists of
128 M0 patients, 93 M1 patients, and 49 M2 patients. Pre
phase images (denoted as ”PRE”), hepatobiliary phase im-
ages (denoted as ”HBP”), and clinical data are collected for
each patient. We do not require any registration operation
between HBP and PRE images. Moreover, we utilize a five-
fold cross-validation strategy to test our network and state-
of-the-art classification methods. Specifically, following the
stardard steps of a leave-one-out five-fold cross-validation
scheme, we split the whole datasets wih 270 cases (128 M0

patients, 93 M1 patients, and 49 M2 patients) into five folds.
In each round of the cross-validation, we take one fold as the
testing set and other four folds as the training set. Then, we
compute the mean and variance value of five rounds for all
evaluation metrics, which are F1-score, AUC, and accuracy,
in order to conduct the comparisons between our network
and compared methods.

Clinical Data. The clinical data consists of 52 Preopera-
tive laboratory indexes. Non-image clinical data in our work
are collected and obtained from the report of blood tests, the
patient’s medical record report, as well as the MRI hallmarks
by the radiologists’ reviews. In summary, our clinical data is
sufficient since it includes diverse liver detection indicators
of the liver in clinical diagnosis.

Evaluation Metrics. We employ three widely-used clas-
sification metrics for quantitatively comparing different
methods. They are F1-score, Accuracy, and the macro-
averaged one-versus-one Area under the curve (AUC). In
general, a better HCC’s MVI classification result shall have
larger values for all three metrics.

Comparisons against State-of-the-art Methods
Compared Methods. We evaluate the effectiveness of
our classification network by comparing it against seven
state-of-the-art methods, including concatenation-based fea-
ture fusion method (Nie et al. 2019) (denoted as ”Con-
cat”), “3DCNN” (Jiang et al. 2021), LSTM-based multi-
modality fusion method (Men et al. 2019) (denoted as
“LSTM”), M2Net (Zhou et al. 2020), stage wise multi-
modality fusion network (Zhou et al. 2019) (denoted as
“Concat 2S”), traditional knowledge distillation (Hinton,
Vinyals, and Dean 2015) with our module (denoted as
“KD ours”), and similarity-preserving knowledge distilla-
tion(Tung and Mori 2019) with our module (denoted as
“SP ours”). For a fair comparison, we obtain the classifi-
cation results of all competitors by exploiting its public im-
plementations or implementing them by ourselves, and the
network parameters of each network are fine-turned to ob-
tain the best classification results for comparisons.



Table 1: Quantitative results (mean ± variance) of our network and state-of-the-art methods on our dataset.

Method F1-score (%) Accuracy (%) AUC (%) p-value
Concat (Nie et al. 2019) 58.82± 1.28 60.75± 0.99 67.13± 0.73 1.22e-2
3DCNN (Jiang et al. 2021) 43.54± 6.20 53.93± 2.76 67.00± 1.02 9.44e-4
LSTM (Men et al. 2019) 58.20± 4.32 61.37± 3.24 67.97± 1.58 4.29e-3
M2Net (Zhou et al. 2020) 57.45± 3.24 59.12± 2.87 66.79± 1.66 2.57e-3
Concat 2S (Zhou et al. 2019) 58.50± 0.69 61.13± 0.99 68.84± 1.34 1.02e-2
KD ours (Hinton, Vinyals, and Dean 2015) 61.69± 3.08 63.14± 2.02 71.01± 1.60 2.20e-1
SP ours (Tung and Mori 2019) 58.55± 4.89 61.57± 3.65 68.43± 2.64 3.43e-3
Our method 62.16± 3.3562.16± 3.3562.16± 3.35 63.38± 3.2263.38± 3.2263.38± 3.22 71.46± 1.8471.46± 1.8471.46± 1.84

Table 2: Quantitative results of our method and baseline net-
works of the ablation study. ”S” indicate student network, T
indicate teacher network.

Method T/S F1-score (%) Accuracy (%) AUC (%)
S-pre S 57.67± 4.36 60.52± 2.65 68.35± 1.61
S-hbp S 59.31± 1.73 60.83± 1.60 69.35± 1.43
S-pre-hbp S 60.02± 0.98 61.95± 0.83 69.98± 0.96
ours-w/o-hbp S→T 58.02± 3.88 60.57± 2.78 69.24± 2.23
ours-w/o-pre S→T 60.41± 3.44 62.23± 2.26 70.27± 1.49
ours-w/o-CA S→T 61.03± 3.74 61.87± 3.02 69.71± 1.75
Our method S→T 62.16± 3.3562.16± 3.3562.16± 3.35 63.38± 3.2263.38± 3.2263.38± 3.22 71.46± 1.8471.46± 1.8471.46± 1.84

Quantitative Comparisons. Table 1 reports the mean ±
variance results of three metrics for our method and seven
compared networks under a five-fold cross-validation ex-
periment on our dataset. From the results, we can find that
“KD ours” has the best performance on three metrics on
all compared methods, and they are the F1-score score of
61.69, the Accuracy score of 63.14, and the AUC score of
71.01. More importantly, our method has larger F1-score,
Accuracy, and AUC scores than “KD ours”. Specifically,
our method has a F1-score improvement of 0.47%, an Ac-
curacy improvement of 0.24%, and an AUC improvement of
0.45%, when compared to KD ours. Moreover, our method
outperforms “KD ours” and “SP ours” on all three metrics,
which demonstrating the superior performance of our dis-
tillation method over “KD ours” and “SP ours”. We com-
pute p-values between our network and compared methods
in terms of the AUC metric, and reported the correspond-
ing p-values in Table 1. Apparently, we can find that all
the p-values of our network over compared methods (except
KD ours) are smaller than 0.05. It indicates that our method
has a AUC significant improvement between our network
and each compared method.

Ablation Study
We also conduct the ablation study experiments to verify
the major components in our network design. Here, we con-
struct six baseline networks, and compare the quantitative
results of our method and baseline networks.

According to the quantitative results of Table 2, we can
find that “S-pre-hbp” has higher F1-score, Accuracy, AUC
values than “S-pre” and “S-hbp”. It shows that combining
the PRE and HBP MRI data together can enhance the MVI
classification performance of our student network. Specifi-

cally, “S-pre-hbp” further enhances the mean F1-score value
from 59.31% to 60.02%, the mean Accuracy value from
60.83% to 61.95%, and the mean AUC value from 69.35%
to 69.98%.

According to the quantitative comparisons in Table 2, it
can be easily observed that our method has a superior per-
formance of F1-score, Accuracy, and AUC over “ours-w/o-
pre”, “ours-w/o-hbp” and “ours-w/o-CA”. To be specific, the
F1-socre, Accuracy, and AUC values of the “ours-w/o-pre”
are 58.02%, 60.57%, and 69.24%, while “ours-w/o-hbp” has
a F1-score of 60.41%, a Accuracy of 62.23%, and a AUC
of 70.27%. Apparently, the HBP MRI data has better MVI
prediction results than the PRE MRI data in our method.
And the F1-socre, Accuracy, and AUC values of the “ours-
w/o-CA” are 61.03%, 61.87%, 69.71. Moreover, compared
to the best-performing results of “ours-w/o-pre” and “ours-
w/o-CA”, our method improves F1-score from 61.03% to
62.16%, Accuracy from 62.23% to 63.38%, and AUC from
70.27% to 71.46%. It demonstrates that removing the PRE
MRI data, HBP MRI data or CA module from our net-
work degrades the MVI classification performance of our
network.

Conclusion

This work presents a Cross-modality knowledge distillation
network (CMD-Net) for a MVI prediction in HCC. Our
CMD-Net transfers the teacher network with a non-image
clinical modality and a multi-MRI image modality to a stu-
dent network with only image multi-MRI image by formu-
lating a classification-level distillation and a feature-level
distillation. By doing so, with the help of the distilled clin-
ical information, our student network can obtain a superior
HCC prediction in the testing stage, which does not have any
clinical modality data. In the teacher network, we formulate
MRI-clinical-fusion CNNs and a cross attention (CA) mod-
ule to integrate two groups of the MRI data and the clinical
data. Then, we formulate two MRI-only module and a SA
module to fuse features from two MRI data in the student
network of our MD-Net. Experimental results on our col-
lected dataset and a multi-modal sarcasm detection dataset
show that our CMD-Net outperforms state-of-the-art meth-
ods in terms of a MVI prediction in HCC.
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